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The problem of Luzin and the theorem of Sierpinski have found interesting
connections with the measure extension problem. The study of the measur-
ability properties of uniform sets is an interesting topic for our research. In
measure theory it is well known the standard concept of measurability of sets
and functions with respect to a fixed measure µ on a base (ground) set E. Now
we introduce the concept of measurability of sets and functions not with respect
to a fixed measure µ, but with respect to certain classes of measures, which are
defined on different σ-algebras of subsets of base space E. (see [1], [2]).

Let E be a set and let M be a class of measures on E (in general, we do
not assume that measures belonging to M are defined on the one and same
σ-algebra of subset of E).

Definition.

• We say that a function f : E → R is absolutely (or universally) measurable
with respect to M if f is measurable with respect to all measures from M.

• We say that a function f : E → R is relatively measurable with respect
to M if there exists at least one measure µ from M such that f is µ-
measurable.

• We say that a function f : E → R is absolutely nonmeasurable with
respect to M if there exists no measure µ from M such that f is µ-
measurable.

In particular, the graph of a function φ : R → R, which yields a positive
solution of Luzin’s problem, is an absolutely nonmeasurable subset of E = R2

with respect to the class of all nonzero σ-finite measures on R2 that are invariant
under the group of all isometries of R2.

Theorem. There exists a uniform subset of R2 which is a Hamel basis of
R2.
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